(年贵州贵阳12分)如图,经过点A(0,﹣6)的抛物线与x轴相交于B(﹣2,0),C两点.
(1)求此抛物线的函数关系式和顶点D的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.
在数轴上把下列各数表示出来,并用“”连接各数.
,
,
,
,
, 4
将有理数,0,20,
,1
,
,
放入恰当的集合中.
计算
(1)
(2)
(3)
(4)
(5)
如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.
已知:点P为正方形ABCD内部一点,且∠BPC=90°,过点P的直线分别交边AB、边CD于点E、点F.
(1)如图1,当PC=PB时,则S△PBE、S△PCF S△BPC之间的数量关系为 _________ ;
(2)如图2,当PC=2PB时,求证:16S△PBE+S△PCF=4S△BPG;
(3)在(2)的条件下,Q为AD边上一点,且∠PQF=90°,连接BD,BD交QF于点N,若S△bpc=80,BE=6.求线段DN的长.