游客
题文

如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,c满足+(c-8)2=0.

(1)a =       ,b =       ,c =      
(2)若将数轴折叠,使得A点与B点重合,则点C与数       表示的点重合.
(3)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB =       ,AC =       ,BC =       .(用含t的代数式表示)
(4)请问:3AB-(2BC+AC)的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.

科目 数学   题型 解答题   难度 中等
知识点: 数轴
登录免费查看答案和解析
相关试题

已知直线 y = 1 2 x + 2 分别交 x 轴、 y 轴于 A B 两点,抛物线 y = 1 2 x 2 + mx 2 经过点 A ,和 x 轴的另一个交点为 C

(1)求抛物线的解析式;

(2)如图1,点 D 是抛物线上的动点,且在第三象限,求 ΔABD 面积的最大值;

(3)如图2,经过点 M ( 4 , 1 ) 的直线交抛物线于点 P Q ,连接 CP CQ 分别交 y 轴于点 E F ,求 OE · OF 的值.

备注:抛物线顶点坐标公式 ( b 2 a 4 ac b 2 4 a )

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时 m 千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时 m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程 y km y km 与时间 x ( h ) 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:

(1)图中 E 点的坐标是  ,题中 m =    km / h ,甲在途中休息   h

(2)求线段 CD 的解析式,并写出自变量 x 的取值范围;

(3)两人第二次相遇后,又经过多长时间两人相距 20 km

如图, AB O 的直径, AC 为弦, BA 的平分线交 O 于点 D ,过点 D 的切线交 AC 的延长线于点 E

求证:(1) DE AE

(2) AE + CE = AB

已知关于 x 的一元二次方程 x 2 5 x + 2 m = 0 有实数根.

(1)求 m 的取值范围;

(2)当 m = 5 2 时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号