(年江苏盐城12分)如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.
(1)求点C的坐标及二次函数的关系式;
(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;
(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.
(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)
若点(3,4)是反比例函数图象上一点,则此函数图象必经过点()
A.(2,6) | B.(2,-6) |
C.(4,-3) | D.(3,-4) |
当n取什么值时,是反比例函数?它的图象在第几象限内?在每个象限内,y随x增大而增大或是减小?
在同一坐标系中,画出和
的图象,并求出交点坐标。
下列各题中,哪些是反比例函数关系。
(1)三角形的面积S一定时,它的底a与这个底边上的高h的关系;
(2)多边形的内角和与边数的关系;
(3)正三角形的面积与边长之间的关系;
(4)直角三角形中两锐角间的关系;
(5)正多边形每一个中心角的度数与正多边形的边数的关系;
(6)有一个角为的直角三角形的斜边与一直角边的关系。
已知函数是一次函数,它的图象与反比例函数
的图象交于一点,交点的横坐标是
,求反比例函数的解析式。