(年新疆区、兵团12分)如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).
(1)写出A,B两点的坐标;
(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?
(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.
某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B 、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图。
出口 |
B |
C |
人均购买饮料数量(瓶) |
3 |
2 |
(1)在A出口的被调查游客中,购买2瓶以上饮料的游客人数占A出口的被调查游客人数的____________%
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如上表所示,若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
如图,等腰梯形ABCD中,AB = CD,AD∥BC.
(1)求证:△AOB≌△DOC;
(2)若AD = 4,BC = 8,,
①求梯形ABCD的面积;
②若E为AB中点,F为OC的中点,求EF的长.
如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于H.
求证:△BCG≌△DCE;
(1)求证:BH⊥DE;
(2)试问当CG等于多少时,BH垂直平分DE?
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点D处,点A落在点处,连结BE.
求证:四边形是菱形;
若AB =" 4" cm,BC =" 8" cm,求折痕EF的长.
如图,△ABC中,AB = AC,AD、AE分别是∠BAC和∠BAC外角的平分线,.
(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.