游客
题文

(2014年江苏苏州9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4 cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).
(1)如图①,连接OA,AC,则∠OAC的度数为    °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

一艘轮船在静水中的最大航速为30 km/ h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?

如图,抛物线 yax 2+ bx﹣5与坐标轴交于 A(﹣1,0), B(5,0), C(0,﹣5)三点,顶点为 D

(1)请直接写出抛物线的解析式及顶点 D的坐标;

(2)连接 BC与抛物线的对称轴交于点 E,点 P为线段 BC上的一个动点(点 P不与 BC两点重合),过点 PPFDE交抛物线于点 F,设点 P的横坐标为 m

①是否存在点 P,使四边形 PEDF为平行四边形?若存在,求出点 P的坐标;若不存在,说明理由.

②过点 FFHBC于点 H,求△ PFH周长的最大值.

如图,⊙ O是△ ABC的外接圆,点 OBC边上,∠ BAC的平分线交⊙ O于点 D,连接 BDCD,过点 DBC的平行线与 AC的延长线相交于点 P

(1)求证: PD是⊙ O的切线;

(2)求证:△ ABD∽△ DCP

(3)当 AB=5 cmAC=12 cm时,求线段 PC的长.

某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.

(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?

(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的 3 5 ,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.

①若设购进甲种羽毛球 m筒,则该网店有哪几种进货方案?

②若所购进羽毛球均可全部售出,请求出网店所获利润 W(元)与甲种羽毛球进货量 m(筒)之间的函数关系式,并说明当 m为何值时所获利润最大?最大利润是多少?

为提升学生的艺术素养,学校计划开设四门艺术选修课: A.书法; B.绘画; C.乐器; D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?

(2)请把条形统计图补充完整;

(3)学校为举办2018年度校园文化艺术节,决定从 A.书法; B.绘画; C.乐器; D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号