有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,不放回卡片洗匀,再从余下的两张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y)。
(1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)求使分式无意义的(x,y)出现的概率;
(3)化简分式,并求使分式的值为整数的(x,y)出现的概率.
利用因式分解计算:(本题5分)
因式分解(每题5分,共计30分)(1)
(2)
(3)
(4)
(5)
(6)
求下列各式中的值(每题3分,共计6分)
(1)
(2)
将下列各数按从小到大的顺序排列,用“<”号连结起来(本小题2分)、
、
、
、
、
(本题12分)某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套
型桌椅(一桌两椅)需木料
,一套
型桌椅(一桌三椅)需木料
,工厂现有库存木料
.
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往震区,已知每套
型桌椅的生产成本为100元,运费2 元;每套
型桌椅的生产成本为120元,运费4元,求总费用
(元)与生产
型桌椅
(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用
生产成本
运费)
(3)按(2)的方案计算,有没有剩余木料?如果有,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.