如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线.
(1)当点D恰好落在垂线上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△,当点O′与点E重合时停止平移.设平移的时间为t秒,△
与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若与线段
交于点P,连接
,
,
,是否存在这样的t,使△
是等腰三角形?若存在,求出t的值;若不存在,请说明理由.
已知有理数,
满足
,求
的值.
电视台为某个广告公司特约播放甲、乙两部电视连续剧.经调查,播放甲连续剧平均每集有收视观众20万人次,播放乙连续剧平均每集有收视观众15万人次,公司要求电视台每周共播放7集.
(1)设一周内甲连续剧播放集,甲、乙两部连续剧的收视观众的人次的总和为
万人次,求
关于
的函数关系式;
(2)已知电视台每周只能为该公司提供不超过300分钟的播放时间,并且播放甲连续剧每集需要50分钟,播放乙连续剧每集需要35分钟,请你用所学知识求电视台每周应播放甲、乙两部连续剧各多少集,才能使得每周收看甲、乙连续剧的观众的人次总和最大,并求出这个最大值.
为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。
(1)求出当月用水量不超过5吨时,y与x之间的函数关系式;
(2)某居民某月用水量为8吨,求应付水费是多少?
如图1,□ABCD中,对角线BD⊥AB,AB=5,AD边上的高为.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG与□ABCD位于直线AD的同侧,点F与点D重合,GF与AD在同一直线上.△EFG从点D出发以每秒1个单位的速度沿射线DA方向平移,当点G到点A时停止运动;同时点P也从点A出发,以每秒3个单位的速度沿折线AD→DC方向运动,到达点C时停止运动,设运动的时间为t.
(1)求的长度;
(2)在平移的过程中,记
与
相互重叠的面积为
,请直接写出面积
与运动时间
的函数关系式,并写出
的取值范围;
(3)如图2,在运动的过程中,若线段与线段
交于点
,连接
.是否存在这样的时间
,使得
为等腰三角形?若存在,求出对应的
值;若不存在,请说明理由.
平面直角坐标系中,抛物线交
轴于A、B两点(点A在点B左侧),与
轴交于点C,点A、C的坐标分别为(-3,0),(0,3),对称轴直线
交
轴于点E,点D为顶点.
(1)求抛物线的解析式;
(2)点P是直线AC下方的抛物线上一点,且,,求点P的坐标;
(3)点M是第一象限内抛物线上一点,且∠MAC=∠ADE,求点M的坐标.