如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
(Ⅰ)求这两个班学生成绩的中位数及x的值;
(Ⅱ)如果将这些成绩分为“优秀”(得分在175分 以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
(本小题满分10分)选修4—4:坐标系与参数方程
以平面直角坐标系的原点为极点,
轴的正半轴为极轴,已知点
的直角坐标为(1,-5),点
的极坐标为(4,
),若直线
过点
,且倾斜角为
,圆
以
为圆心,4为半径.
(Ⅰ)求直线的参数方程和圆
的极坐标方程;
(2)试判定直线与圆
的位置关系.
(本小题满分10分)选修4—1:几何证明选讲
切线与圆切于点
,圆内有一点
满足
,
的平分线
交圆于
,
,延长
交圆于
,延长
交圆于
,连接
.
(Ⅰ)证明://
;
(Ⅱ)求证:.
(本小题满分12分) 已知函数.
(1)若曲线在
处的切线为
,求
的值;
(2)设,
,证明:当
时,
的图象始终在
的图象的下方;
(3)当时,设
,(
为自然对数的底数),
表示
导函数,求证:对于曲线
上的不同两点
,
,
,存在唯一的
,使直线
的斜率等于
.
(本小题满分12分)已知垂直平分线与
交于Q点.
(1)求Q点的轨迹方程;
(2)已知点 A(-2,0), 过点且斜率为
(
)的直线
与Q点的轨迹相交于
两点,直线
,
分别交直线
于点
,
,线段
的中点为
,记直线
的斜率为
.求证:
为定值.
(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。
(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求
的分布列和数学期望.