如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
(Ⅰ)求这两个班学生成绩的中位数及x的值;
(Ⅱ)如果将这些成绩分为“优秀”(得分在175分 以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
(本小题满分12分)已知椭圆(0<b<2)的离心率等于
抛物线
(p>0).
(1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程;
(II)若抛物线的焦点F为
,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足
?若存在,求出点P的坐标;若不存在,请说明理由.
(本小题满分12分)现有正整数1,2,3,4,5,…n,一质点从第一个数1出发顺次跳动,质点的跳动步数通过抛掷骰子来决定:骰子的点数小于等于4时,质点向前跳一步;骰子的点数大于
4时,质点向前跳两步.
(I)若抛掷骰子二次,质点到达的正整数记为
,求E
;
(II)求质点恰好到达正整数5的概率.
(本小题满分12分)如图三棱柱中,底面
侧面
为等边三角形,
且AB=BC,三棱锥
的体积为
(I)求证:;
(II)求直线与平面BAA1所成角的正弦值.
(本小题满分12分)设是单调递增的等差数列,
为其前n项和,且满足
是
的等比中项.
(I)求数列的通项公式;
(II)是否存在,使
?说明理由;
(III)若数列满足
求数列
的通项公式.
(本小题满分12分)
已知向量且满足
(I)求函数的单调递增区间;
(II)设的内角A满足
且
,求边BC的最小值.