游客
题文

(本小题10分)
我校在筹办元旦艺术节前,对学生是喜欢曲艺还是舞蹈节目做了一次调查,随机抽取了100名学生,相关数据如下表所示

1) 若从喜欢舞蹈节目的45名学生中按性别分层随机抽取5名,则女生应该抽取几名;
2) 在1)中抽取的5名学生中任取2名,求恰好有1名男生的概率。

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.

(本小题满分12分)已知抛物线,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为
(1)当时,求椭圆的标准方程;
(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.

(本小题满分12分)如图,四边形ABCD是边长为1的正方形,,且MD=NB=1,E为BC的中点
求异面直线NE与AM所成角的余弦值
在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由

(本小题满分12分)已知命题表示焦点在轴上的椭圆,命题表示双曲线.若有且仅有一个正确,求的取值范围.

(本小题满分10分) 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号