已知抛物线(
)经过A(
,0),B(2,0)两点,与y轴相交于点C,点D为该抛物线的顶点.
(1)求该抛物线的解析式及点D的坐标;
(2)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为时,求点E的坐标;
(3)在(2)的条件下,在x轴上有一点P,且∠EAO+∠EPO=∠α,当tanα=2时,求点P的坐标.
如图,在矩形 中, ,两条对角线相交于点 .以 为邻边作第 个平行四边形 ,对角线相交于点 ;再以 为邻边作第 个平行四边形 ,对角线相交于点 ;再以 为邻边作第 个平行四边形 ;…,依此类推.
(1)求矩形 的面积;
(2)求第 个平行四边形 、第 个平行四边形 和第 个平行四边形的面积.
如图, 分别是四边形 各边中点.
(1)若四边形 是任意四边形、则四边形 是怎样的四边形?
(2)若四边形 是矩形,则四边形 是怎样的四边形?
(3)若四边形 分別菱形、正方形、等腰梯形时,则四边形 又分别是怎样的四边形?
(4)若四边形 是矩形,则四边形 有什么特征?
(5)若四边形 分别是菱形、正方形时,则四边形 又有什么特征?
如图,正方形 的边长为 ,点 , , , 分别在正方形的四条边上,已知 , .
(1)若 ,求四边形 的周长和面积;
(2)求四边形 的周长的最小值.
已知正方形 中, 绕点 顺时针旋转,它的两边分别交 (或它们的延长线)于点 .当 绕点 旋转得到 时(如图1),易证 .
(1)当 绕点 旋转到 时(如图2),线段 和 之间有怎样的数量关系?写出猜想,并加以证明;
(2)当 绕点 旋转到如图3的位置时,线段 和 之间又有怎样的数量关系?写出你的猜想,并说明理由.
如图,将边长为 的正方形 折叠,使得 点落在 上的 点,然后压平得折痕 ,若 ,求线段 之长.