(本小题满分13分).已知点A、B的坐标分别为(,0)、(2,0),直线AT、BT交于点T,且它们的斜率之积为常数
,点T的轨迹以及A、B两点构成曲线C.
(Ⅰ)求曲线C的方程,并求其焦点坐标;
(Ⅱ)若,且曲线C上的点到其焦点的最小距离为1.设直线l:
交曲线C于M、N,直线AM、BN交于点P.
(ⅰ)当m = 0时,求点P的坐标;
(ⅱ)当m变化时,是否存在直线l1,使P总在直线l1上?若存在,求出l1的方程;若不存在,请说明理由.
(本小题满分14分)
已知直线相交于A、B两点。
(1)若椭圆的离心率为,焦距为2,求椭圆的标准方程;
(2)若(其中O为坐标原点),当椭圆的离率
时,求椭圆的长轴长的最大值。
(本小题满分14分)
甲乙二人用4张扑克牌(分别是红桃2, 红桃3, 红桃4, 方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)设分别表示甲、乙抽到的牌的数字
,写出甲乙二人抽到的牌的所有情况.
(Ⅱ)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(Ⅲ)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.
(本小题满分14分)
如图,在四棱锥中,底面ABCD是正方形,侧棱
底面ABCD,
,E是PC的中点,作
交PB于点F;
(I)证明 平面
;
(II)证明平面EFD;
(本小题满分12分)已知定义域为R,
(1)求的值域;
(2在区间上,
,求
)
已知.
(1)当时,求
上的值域;
(2) 求函数在
上的最小值;
(3) 证明: 对一切,都有
成立