(本小题满分12分)如图,椭圆的右焦点与抛物线
的焦点重合,过
且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足
(O为坐标原点),求实数t的取值范围.
已知椭圆的方程为
,双曲线
的左、右焦点分别为
的左、右顶点,而
的左、右顶点分别是
的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆
及双曲线
都恒有两个不同的交点,且L与的两个焦点A和B满足
(其中O为原点),求
的取值范围。
如图,三棱柱中,
,
,平面
平面
,
与
相交于点
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值.
已知向量,
,函数
.
(1)求函数的最小正周期
与值域;
(2)已知,
,
分别为
内角
,
,
的对边,其中
为锐角,
,
,且
,求
,
和
的面积
.
(本小题满分7分)选修4—5:不等式选讲
已知函数.
(Ⅰ)求函数的值域;
(Ⅱ)设,试比较
与
的大小.
(本小题满分7分)《选修4-4:坐标系与参数方程》
已知曲线(
为参数),
(
为参数).
(Ⅰ)化的方程为普通方程;
(Ⅱ)若上的点对应的参数为
为
上的动点,求
中点
到直线
(
为参数)距离的最小值.