中 是 上的点, 平分 .
(Ⅰ)求
;
(Ⅱ)若
,求
.
求函数的最大值和最小值。
计算:
(本小题共13分)
如图,在直角坐标系中,O为坐标原点,直线AB⊥x轴于点C,,动点M到直线AB的距离是它到点D的距离的2倍。
(I)求点M的轨迹方程;
(II)设点K为点M的轨迹与x轴正半轴的交点,直线l交点M的轨迹于E,F两点(E,F与点K不重合),且满足,动点P满足
,求直线KP的斜率的取值范围。
(本小题共14分)
四棱锥P—ABCD中,PA⊥底面ABCD,AB//CD,AD=CD=1,∠BAD=120°,PA=,∠ACB=90°。
(I)求证:BC⊥平面PAC;
(II)求二面角D—PC—A的大小;
(III)求点B到平面PCD的距离。
(本小题共13分)
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收。抽检规定是这样的:一次取一件产品检查,若前三次没有抽查到次品,则用户接收这箱产品,而前三次中只要抽查到次品就停止抽检,并且用户拒绝接收这箱产品。
(I)求这箱产品被用户拒绝接收的概率;
(II)记表示抽检的产品件数,求
的概率分布列。