(本小题8分)机器按照模具生产的产品也会有缺陷,我们将有缺陷的产品称为次品,每小时出现的次品数随机器运转速度的不同而变化.下表为某机器生产过程的数据:
速度x(百转/秒) |
2 |
4 |
5 |
6 |
8 |
每小时生产次品数y(个) |
30 |
40 |
50 |
60 |
70 |
(1)求机器运转速度与每小时生产的次品数之间的回归方程;
(2)若实际生产所允许的每小时生产的次品数不超过75件,那么机器的速度(百转/秒)不超过多少?(写出满足题目的整数解)
(本小题满分12分)
如图,在直三棱柱中,AB=1,AC=2,
,D,E分别是
和
的中点.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)求直线DE与平面所成的角.
(本小题满分12分)设甲、乙两套试验方案在一次试验中成功的概率均为,且这两套试验方案中至少有一套试验成功的概率为0.51,假设这两套试验方案在试验过程中,相互之间没有影响.设试验成功的方案的个数
. (Ⅰ)求
的值; (Ⅱ)求
的数学期望
与方差
.
(本小题满分10分)
已知A,B,C是的内角,
分别是其对边长,
向量.
(Ⅰ)求角A的大小; (Ⅱ)若,求
的长.
(本小题满分12分)
已知椭圆C的中心在原点、焦点在轴上,椭圆C上的点到焦点的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线:
与
椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线
过定点,并求出定点的坐标.
(本小题满分12分)
已知数列中,
,且点
在直线
上. (Ⅰ)求数列
的通项公式;(Ⅱ)若函数
,求函数
的最小值; (Ⅲ)设
表示数列
的前
项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立?若存在,写出
的解析式,并加以证明;若不存在,试说明理由.