游客
题文

已知抛物线 C 1 : x 2 = 4 y 的焦点 F 也是椭圆 C 2 : y 2 a 2 + x 2 b 2 = 1 ( a > b > 0 ) 的一个焦点, C 1 C 2 的公共弦的长为 2 6 .
(1)求 C 2 的方程;
(2)过点 F 的直线 l C 1 相交于 A , B 两点,与 C 2 相交于 C , D 两点,且 A C B D 同向
(ⅰ)若 A C = B D ,求直线 l 的斜率
(ⅱ)设 C 1 在点 A 处的切线与 x 轴的交点为 M ,证明:直线 l 绕点 F 旋转时, M F D 总是钝角三角形

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分12分)
为备战2012奥运会,甲、乙两位射击选手进行了强化训练. 现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理? 简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为,求的分布列及均值E.

(本小题满分12分)
已知点是圆上任意一点,点与点关于原点对称.线段的中垂线分别与交于两点.
(1)求点的轨迹的方程;
(2)斜率为1的直线与曲线交于两点,若为坐标原点),求直线的方程.

(本小题满分12分)
如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,,E是SA的中点.

(1)求证:平面BED平面SAB;
(2)求直线SA与平面BED所成角的大小.

(本小题满分14分)已知函数,其中
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间与极值.

(本小题满分14分)已知圆过点, 且在轴上截得的弦的长为.
(1) 求圆的圆心的轨迹方程;
(2) 若, 求圆的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号