平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1a>b>0的离心率为32,且点(3,12)在椭圆C上. (Ⅰ)求椭圆C的方程; (Ⅱ)设椭圆E:x24a2+y24b2=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q. (ⅰ)求OQOP的值; (ⅱ)求△ABQ面积的最大值.
直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程. (1)过定点. (2)与直线垂直.
已知是四边形所在平面外一点,四边形是的菱形,侧面 为正三角形,且平面平面. (1)若为边的中点,求证:平面. (2)求证:.
如图所示,在三棱柱中,点为棱的中点. (1)求证:. (2)若三棱柱为直三棱柱,且各棱长均为,求异面直线与所成的角的余弦值.
一个圆锥,它的底面直径和高均为. (1)求这个圆锥的表面积和体积. (2)在该圆锥内作一内接圆柱,当圆柱的底面半径和高分别为多少时,它的侧面积最大?最大值是多少?
不等式,当时恒成立.求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号