已知数列
与
满足
.
(1)若
,且
,求数列
的通项公式;
(2)设
的第
项是最大项,即
,求证:数列
的第
项是最大项;
(3)设
,求
的取值范围,使得
有最大值
与最小值
,且
.
设
(1)若在
上存在单调递增区间,求
的取值范围;
(2)当a=1时,求在
上的最值.
已知函数,当
时,函数
取得极值.
(1)求实数的值;
(2)确定函数的单调区间
甲乙两人约定在下午六点到七点之间在某处会面,并约定先到者应等候另一人20分钟,过时即可离去,求两人能会面的概率。
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
已知命题:方程
有两个不等负实数根;命题
:方程
无实根;若“
或
”为真,“
且
”为假,求实数
的取值范围.