游客
题文

已知函数 f x = x + 1 - 2 x - a , a > 0 .

(Ⅰ)当 a = 1 时,求不等式 f x > 1 的解集;
(Ⅱ)若 f x 的图像与 x 轴围成的三角形面积大于6,求 a 的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,直三棱柱中,,中点,求直线与平面所成角的大小.(结果用反三角函数值表示)

本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意都成立,那么,这样的数列我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得对任意都成立?若存在,求出λ;若不存在,说明理由.

本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点,两焦点为是坐标原点,不经过原点的直线与椭圆交于两不同点.
(1)求椭圆C的方程;
(2) 当时,求面积的最大值;
(3) 若直线的斜率依次成等比数列,求直线的斜率.

本题共有2个小题,第1小题满分6分,第2个小题满分8分。
已知.
(1)当,时,若不等式恒成立,求的范围;
(2)试证函数内存在零点.

本题共有2个小题,第1小题满分6分,第2个小题满分8分。
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号