某商场欲经销某种商品,考虑到不同顾客的喜好,决定同时销售、
两个品牌,根据生产厂家营销策略,结合本地区以往经销该商品的大数据统计分析,
品牌的销售利润
与投入资金
成正比,其关系如图1所示,
品牌的销售利润
与投入资金
的算术平方根成正比,其关系如图2所示(利润与资金的单位:万元).
(1)分别将、
两个品牌的销售利润
、
表示为投入资金
的函数关系式;
(2)该商场计划投入5万元经销该种商品,并全部投入、
两个品牌,问:怎样分配这5万元资金,才能使经销该种商品获得最大利润,其最大利润为多少万元?
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,
.
(Ⅰ)求的值;
(Ⅱ)若,
,求
的值.
(本小题满分14分)
已知函数.
(Ⅰ)若函数在其定义域上为增函数,求
的取值范围;
(Ⅱ)设(
),求证:
.
(本小题满分13分)
已知椭圆的短轴长为
,且与抛物线
有共同的焦点,椭圆
的左顶点为A,右顶点为
,点
是椭圆
上位于
轴上方的动点,直线
,
与直线
分别交于
两点.
(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)在线段的长度取得最小值时,椭圆
上是否存在一点
,使得
的面积为
,若存在求出点
的坐标,若不存在,说明理由.
(本小题满分13分)
已知等比数列的公比
,
是
和
的一个等比中项,
和
的等差中项为
,若数列
满足
(
).
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和
.
(本小题满分14分)
如图,四棱锥中,
平面
,底面
为矩形,
,
,
为
的中点.
(Ⅰ)求证:;
(Ⅱ)求三棱锥的体积;
(Ⅲ)边上是否存在一点
,使得
平面
,若存在,求出
的长;若不存在,请说明理由.