在平面直角坐标系
中,点
,
,其中
.
(1)当
时,求向量
的坐标;
(2)当
时,求
的最大值.
给定数列
(1)判断
是否为有理数,证明你的结论;
(2)是否存在常数
.使
对
都成立? 若存在,找出
的一个值, 并加以证明; 若不存在,说明理由.
已知抛物线
的焦点
到准线的距离为
.过点

作直线
交抛物线
与
两点(
在第一象限内).
(1)若
与焦点
重合,且
.求直线
的方程;
(2)设
关于
轴的对称点为
.直线
交
轴于
. 且
.求点
到直线
的距离的取值范围.
如图,四棱柱
中,
.
为平行四边形,
,
,
分别是
与
的中点.
(1)求证:
;
(2)求二面角
的平面角的余弦值.
某电视台“挑战60秒”活动规定上台演唱:
(I)连续达到60秒可转动转盘(转盘为八等分圆盘)一次进行抽奖,达到90秒可转两次,达到120秒可转三次(奖金累加).
(II)转盘指针落在I、II、III区依次为一等奖(500元)、二等奖(200元)、三等奖(100元),落在其它区域不奖励.
(III)演唱时间从开始到三位评委中至少1人呜啰为止,现有一演唱者演唱时间为100秒.
(1)求此人中一等奖的概率;
(2)设此人所得奖金为
,求
的分布列及数学期望
.