在△ABC中,A、B、C所对的边分别是a、b、c,bcosB是acosC,ccosA的等差中项.
(1)求B的大小;
(2)若a+c=,b=2,求△ABC的面积.
(本小题满分10分)选修4-4:坐标系与参数方程.
已知曲线C:为参数,0≤
<2π),
(Ⅰ)将曲线化为普通方程;
(Ⅱ)求出该曲线在以直角坐标系原点为极点,轴非负半轴为极轴的极坐标系下的极坐标方程.
选修4—1:几何证明选讲
如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:
。
已知函数(
为自然对数的底数).
(1)求的最小值;
(2)不等式的解集为
,若
且
求实数
的取值范围;
(3)已知,且
,是否存在等差数列
和首项为
公比大于0的等比数列
,使得
?若存在,请求出数列
的通项公式.若不存在,请说明理由.
设椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x |
3 |
—2 |
4 |
![]() |
![]() |
y |
![]() |
0 |
—4 |
![]() |
-![]() |
(1)求的标准方程;
(2)设直线与椭圆
交于不同两点
且
,请问是否存在这样的
直线过抛物线
的焦点
?若存在,求出直线
的方程;若不存在,说明理由.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数.并说明它在乙组数据中的含义;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求
的分布列及数学期望.