某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x件.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.
若x+y=3,且(x+2)(y+2)=12. (1)求xy的值; (2)求x2+3xy+y2的值.
解不等式组:,并把解集在数轴上表示出来.
(本题满分8分,每小题4分)因式分解: (1)2a2﹣8 (2)4ab2―4a2b―b3
(本题满分8分,每小题4分) (1)解方程组: (2)计算:
如图(1),四边形ABCD中,AD∥BC,点E是线段CD上一点, (1)说明:∠AEB=∠DAE+∠CBE; (2)如图(2),当AE平分∠DAC,∠ABC=∠BAC. ①说明:∠ABE+∠AEB=900; ②如图(3)若∠ACD的平分线与BA的延长线交于点F,且∠F=600,求∠BCD.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号