(本小题满分12分)已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左、右焦点.(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求经过点且平行于直线 的直线的极坐标方程;(Ⅱ)设(Ⅰ)中直线与圆锥曲线交于两点,求.
解不等式:3≤|5-2x|<9.
解不等式:|x+1|>3.
已知直线C1:(t为参数),C2:(θ为参数). (1)当α=时,求C1与C2的交点坐标; (2)过坐标原点O作C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.
已知曲线C的极坐标方程为ρ=6sinθ,以极点为原点、极轴为x轴非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段的长度.
已知极坐标方程为ρcosθ+ρsinθ-1=0的直线与x轴的交点为P,与椭圆(θ为参数)交于点A、B,求PA·PB的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号