已知椭圆上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)点和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,证明:
,
,
三点共线.
定义在R上的奇函数有最小正周期4,且
时,
.
(1)求在
上的解析式;
(2)判断在
上的单调性,并给予证明;
(3)当为何值时,关于方程
在
上有实数解?
某同学用“五点法”画函数(
)在某一个周期内的图象时,列表并填入的部分数据如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)请求出上表中的,并直接写出函数
的解析式;
(Ⅱ)将的图象沿x轴向右平移
个单位得到函数
,若函数
在
(其中
上的值域为
,且此时其图象的最高点和最低点分别为
、
,求
与
夹角θ的大小.
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点
,过点
;当
时,图象是线段
,其中
.根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
在中,角
所对的边分别为
,满足:
.
(Ⅰ)求的大小;
(Ⅱ)若,求
的最大值,并求取得最大值时角
的值.
已知;
.
(Ⅰ)若是
的必要条件,求
的取值范围;
(Ⅱ)若是
的必要不充分条件,求
的取值范围.