已知椭圆上的左、右顶点分别为
,
,
为左焦点,且
,又椭圆
过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)点和
分别在椭圆
和圆
上(点
除外),设直线
,
的斜率分别为
,
,若
,证明:
,
,
三点共线.
中心在原点,焦点在坐标轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴比双曲线的半实轴长
,离心率之比为2:3。求这两条曲线的方程
如图,已知椭圆:
与双曲线
的离心率互为倒数,且
圆:
的圆心是椭圆
的左顶点,设圆
与椭圆
交于点
与点
.
(1)求的最小值;
(2)设点是椭圆
上异于
,
的任意一点,且直线
分别与
轴交于点
,
为坐标原点,求
的最小值.
已知经过点的双曲线C的渐近线方程为
,直线
与双曲线右支交于P,Q两点.
(1)求的取值范围;
(2)若,且曲线C上存在点
,满足
,求点
坐标
已知抛物线上有两点
(1)当抛物线的准线方程为时,作正方形ABCD使得边CD直线方程为
,求正方形
的边长;
(2)抛物线上一定点Px0,,y0)(y0>0),当PA与PB的斜率存在且倾斜角互补时,求证直线AB的斜率是非零常数.
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.
(1)建立适当的坐标系,求圆C的圆心的轨迹方程;
(2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.