(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组
, ,第五组
.右图是按上述分组方法得到的频率分布直方图.
按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“
”发生的概率.
设,求
的值。
,
是方程
的两根,
数列
是公差为正的等差数列,数列
的前
项和为
,且
.
(1)求数列,
的通项公式;
(2)记=
,求证数列
的前
项和
小于2.
营养学家指出,成人良好的日常饮食应该至少提供75g碳水化合物,60g的蛋白质,60g的脂肪.1000g食物A含有105g碳水化合物,70g蛋白质,140g脂肪,花费28元;而1000g食物B含有105g碳水化
合物,140g蛋白质,70g脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少g?花费多少钱?
已知函数,
(1)求不等式的解集;
(2)若对一切,均有
成立,求实数
的取值范围.
已知等差数列的首项
,公差
.且
分别是等比数列
的
(1)求数列与
的通项公式;
(2)设数列对任意自然数
均有:
成立.求
的值。