(本大题满分10分)选修4-5:不等式选讲
已知函数
(Ⅰ)若
的解集为
,求实数
的值;
(Ⅱ)当
且
时,解关于
的不等式
如图,已知椭圆
的上顶点为
,右焦点为
,直线
与圆
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若不过点
的动直线
与椭圆
相交于
、
两点,且
求证:直线
过定点,并求出该定点
的坐标
已知数列
的前n项和为
,且
,(n=1,2,3…)数列
中,
,点
在直线
上。
(Ⅰ)求数列
和
的通项公式;
(Ⅱ)记
,求满足
的最大正整数n。
已知如图几何体,正方形
和矩形
所在平面互相垂直,
,
为
的中点,
。
(Ⅰ)求证:
;
(Ⅱ)求二面角
的大小
若向量
,在函数
的图象中,对称中心到对称轴的最小距离为
且当
的最大值为1。
(I)求函数
的解析式;
(II)求函数
的单调递增区间。
已知曲线
的极坐标方程为
,直线
的参数方程是:
.
(Ⅰ)求曲线
的直角坐标方程,直线
的普通方程;
(Ⅱ)将曲线
横坐标缩短为原来的
,再向左平移1个单位,得到曲线曲线
,求曲线
上的点到直线
距离的最小值.