(本小题满分12分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝
以上为“常喝”,体重超过
为“肥胖”.
|
常喝 |
不常喝 |
合计 |
肥胖 |
|
2 |
|
不肥胖 |
|
18 |
|
合计 |
|
|
30 |
已知在全部人中随机抽取1人,抽到肥胖的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;
(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.
参考数据:
![]() |
0.150 |
0.100 |
0.050 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
[选修4-5:不等式选讲]
已知 .
(1)求不等式 的解集;
(2)在直角坐标系 中,求不等式组 所确定的平面区域的面积.
[选修4-4:坐标系与参数方程]
在直角坐标系 中,以坐标原点 为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,曲线 ( 为参数, ).
(1)写出 的直角坐标方程;
(2)若直线 既与 没有公共点,也与 没有公共点、求 的取值范围.
已知函数 .
(1)当 时,求曲线 在点 处的切线方程;
(2)是否存在 , ,使得曲线 关于直线 对称,若存在,求 , 的值,若不存在,说明理由;
(3)若 在 存在极值,求 的取值范围.
已知椭圆 的离心率为 ,点 在 上.
(1)求 的方程;
(2)过点 的直线交 于点 , 两点,直线 , 与 轴的交点分别为 , ,证明:线段 的中点为定点.
如图,在三棱锥 中, , , , , , , , 的中点分别为 , , ,点 在 上, .
(1)证明: 平面 ;
(2)证明:平面 平面 ;
(3)求二面角 的正弦值.