(本小题满分10分)选修4-4:极坐标与参数方程 已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值.
解不等式:
已知正数a、b、c满足,求证:
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点。 (I)写出C的直角坐标方程,并求M,N的极坐标; (II)设MN的中点为P,求直线OP的极坐标方程。
已知函数. (Ⅰ)讨论函数的单调性; (Ⅱ)设,证明:对任意,.
过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点、,过点C的直线与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q. (I)当直线过椭圆右焦点时,求线段CD的长; (II)当点P异于点B时,求证:为定值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号