游客
题文

在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BDm·BP时,请直接写出PE与PF的数量关系.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质 对称式和轮换对称式
登录免费查看答案和解析
相关试题

(本题共10分)如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.

(1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位;
(2)经过__________秒后,点P、Q重合;
(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.

(本题共8分)某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):

进出数量
(单位:吨)
-3
4
-1
2
-5
进出次数
2
1
3
3
2


(1)这天仓库的原料比原来增加了还是减少了?请说明理由;
(2)根据实际情况,现有两种方案:
方案一:运进每吨原料费用5元,运出每吨原料费用8元;
方案二:不管运进还是运出费用都是每吨原料6元;
从节约运费的角度考虑,选用哪一种方案比较合适.
(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.

(本题共6分)已知当x=-1时,代数式2mx3-3mx+6的值为7.
(1)若关于的方程2my+n=11-ny-m的解为y=2,求n的值;
(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m-n]的值.

(本题共6分)观察下列各式的计算结果:
1-=1-× 1-=1-×
1-=1-×1-=1-×……
(1)用你发现的规律填写下列式子的结果:
1-×;1-×
(2)用你发现的规律计算:
(1-)×(1-)×(1-)×…×(1-)×(1-).

解方程:(本题共6分,每小题3分)
(1)4x-3(5-x)=6;
(2)=-x.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号