【2015高考新课标1,文17】(本小题满分12分)已知分别是
内角
的对边,
.
(Ⅰ)若,求
(Ⅱ)若,且
求
的面积.
已知椭圆的下顶点为
,
到焦点的距离为
.
(Ⅰ)设Q是椭圆上的动点,求的最大值;
(Ⅱ)若直线与圆O:
相切,并与椭圆
交于不同的两点A、B.当
,且满足
时,求
AOB面积S的取值范围.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生 |
1号 |
2号 |
3号 |
4号 |
5号 |
甲班 |
6 |
5 |
7 |
9 |
8 |
乙班 |
4 |
8 |
9 |
7 |
7 |
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和
,试求
和
的分布列和数学期望.
如图,在棱长为2的正方体中,
分别是棱
的中点,点
分别在棱
,
上移动,且
.
(1)当时,证明:直线
平面
;
(2)是否存在,使平面
与面
所成的二面角为直二面角?若存在,求出
的值;若不存在,说明理由.
设数列的前
项和为
,且首项
.
(Ⅰ)求证:是等比数列;
(Ⅱ)若为递增数列,求
的取值范围.
某实验室一天的温度(单位:)随时间
(单位:
)的变化近似满足函数关系;
.
(1)求实验室这一天的最大温差;
(2)若要求实验室温度不高于11,则在哪段时间实验室需要降温?