【2015高考广东,理16】在平面直角坐标系
中,已知向量
,
,
.
(1)若
,求tan x的值;
(2)若
与
的夹角为
,求
的值.
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,E为PD上一点,AD=2AB=2AP=2,PE=2DE.
(1)若F为PE的中点,求证:BF∥平面ACE;
(2)求三棱锥P-ACE的体积.
为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:
| 月收入 |
[15,25) |
[25,35) |
[35,45) |
[45,55) |
[55,65) |
[65,75] |
| 频数 |
5 |
10 |
15 |
10 |
5 |
5 |
| 赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为非高收入族赞成楼市限购令?
| 非高收入族 |
高收入族 |
合计 |
|
| 赞成 |
|||
| 不赞成 |
|||
| 合计 |
(2)现从月收入在[15,25)的人群中随机抽取两人,求所抽取的两人都赞成楼市限购令的概率.
附:K2=
| P(K2≥k0) |
0.05 |
0.025 |
0.010 |
0.005 |
| k0 |
3.841 |
5.024 |
6.635 |
7.879 |
已知数列{an}的前n项和Sn=n2(n∈N*),等比数列{bn}满足b1=a1,2b3=b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an·bn(n∈N*),求数列{cn}的前n项和Tn.
已知函数f(x)=tan
.
(1)求f
的值;
(2)设α∈
,若f
=2,求cos
的值.
已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m2)的旧住房.
(1)分别写出第1年末和第2年末的实际住房面积的表达式.
(2)如果第5年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)