(本小题满分12分)在平面直角坐标系中,已知椭圆,设
是椭圆
上任一点,从原点
向圆
作两条切线,切点分别为
.
(1)若直线互相垂直,且
在第一象限,求圆
的方程;
(2)若直线的斜率都存在,并记为
,求证:
已知直线l1:2x-y+2=0与l2:x+2y-4=0,点P(1, m).
(Ⅰ)若点P到直线l1, l2的距离相等,求实数m的值;
(Ⅱ)当m=1时,已知直线l经过点P且分别与l1, l2相交于A, B两点,若P恰好
平分线段AB,求A, B两点的坐标及直线l的方程.
如图,已知点A(2,3), B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上.
(Ⅰ)求AB边上的高CE所在直线的方程;
(Ⅱ)求△ABC的面积.
如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.
(Ⅰ)求圆锥的表面积;
(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,
求截得的圆台的体积.
已知直线l的倾斜角为135°,且经过点P(1,1).
(Ⅰ)求直线l的方程;
(Ⅱ)求点A(3,4)关于直线l的对称点A¢的坐标.
求经过点,且与圆
相切于点
的圆
的方程,并判断两圆是外切还是内切?