游客
题文

(本小题满分13分)已知数列的前项和,等差数列
(1)求数列的通项公式;
(2)是否存在正整数,使得 若存在,求出的最小值,若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
知识点: 数列综合
登录免费查看答案和解析
相关试题

已知双曲线=1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为yxc=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.

已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是∶1.

(1)求椭圆C的方程;
(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PAPB分别交椭圆C于另外两点AB,求证:直线AB的斜率为定值.

已知抛物线Cy2=2px(p>0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.

已知圆C经过点A(-2,0),B(0,2),且圆心C在直线yx上,又直线lykx+1与圆C相交于PQ两点.
(1)求圆C的方程;
(2)若·=-2,求实数k的值.

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t(O为坐标原点),当||<时,求实数t的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号