某商场的销售部经过市场调查发现,该商场的某种商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为
元/千克时,每日可售出该商品
千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为元/千克,试确定销售价格
的值,使该商场每日销售该商品所获得的利润最大.
设
(Ⅰ)判断函数的单调性;
(Ⅱ)是否存在实数、使得关于
的不等式
在(1,
)上恒成立,若存在,求出
的取值范围,若不存在,试说明理由.
已知两点,
,曲线
上的动点
满足
,直线
与曲线
交于另一点
.
(Ⅰ)求曲线的方程;
(Ⅱ)设,若
,求直线
的方程.
直四棱柱的底面
是菱形,
,其侧面展开图是边长为
的正方形。
、
分别是侧棱
、
上的动点,
.
(I)证明:;
(II)在棱
上,且
,若
平面
,求
.
某初级中学共有学生2000名,各年级男、女生人数如下表:
初一年级 |
初二年级 |
初三年级 |
|
女生 |
373 |
![]() |
![]() |
男生 |
377 |
370 |
![]() |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19。
(I)求的值;
(II)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
(III)已知,求初三年级中女生比男生多的概率。
设函数
(I)写出函数的最小正周期及单调递减区间;
(II)当时,函数
的最大值与最小值的和为
,解不等式
.