附加题: 对
,记
,函数
.
(1)作出
的图像,并写出
的解析式;
(2)若函数
在
上是单调函数,求
的的取值范围.
(I) 已知抛物线
过焦点
的动直线l交抛物线于A,B两点,O为坐标原点, 求证:
为定值;
(Ⅱ)由 (Ⅰ) 可知: 过抛物线的焦点
的动直线 l 交抛物线于
两点, 存在定点
,使得
为定值. 请写出关于椭圆的类似结论,并给出证明.
设数列
的首项
,前
项和
满足关系式: 
(1)求证:数列
是等比数列;
(2)设数列
是公比为
,作数列
,使
,
求和:
;
(3)若
,设
,
,
求使
恒成立的实数k的范围.
如图,四边形
中(图1),
是
的中点,
,
,
将(图1)沿直线
折起,使二面角
为
(如图2)
(1)求证:
平面
;
(2)求二面角A—DC—B的余弦值。
已知函数f(x)=ln x-
.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为
,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.
为迎接我校110周年校庆,校友会于日前举办了一次募捐爱心演出,有1000 人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数
,满足
电脑显示“中奖”,且抽奖者获得9000元奖金;否则电脑显示“谢谢”,则不中奖.
(1)已知校友甲在第一轮抽奖中被抽中,求校友甲在第二轮抽奖中获奖的概率;
(2)若校友乙参加了此次活动,求校友乙参加此次活动收益的期望;