游客
题文

如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.

(1)求证:AG=BG;
(2)若点M为BC的中点,同时SBMG=1,求三角形ADG的面积.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

先化简,后求值:
,其中

计算:
(1) 6-1+(-6)+13
(2)

如图,在梯形ABCD中,AB‖CD,∠A=,AB=3,CD=6,BE⊥BC交直线AD于点E.

(1)当点E与D恰好重合时,求AD的长;
(2)当点E在边AD上时(E不与A、D重合),设AD=x,ED=y,试求y关于x的函数关系式,并写出定义域;
(3)问:是否可能使△ABE、△CDE与△BCE都相似?若能,请求出此时AD的长;若不能,请说明理由.

已知二次函数.
(1)求此二次函数图像与x轴交点A、B(A在B的左边)的坐标;
(2)若此二次函数图像与y轴交于点C、且△AOC∽△COB(字母依次对应).
①求a的值;
②求此时函数图像上关于原点中心对称的两个点的坐标.

教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad 的值为(▼)

A. B.1 C. D.2

(2)对于,∠A的正对值sad A的取值范围是▼ .
(3)已知,其中为锐角,试求sad的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号