某机床厂2011年年初用98万元购进一台数控机床,并立即投入生产使用.计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元;该机床使用后,每年的总收入为50万元.
设使用年后数控机床的盈利额为
万元.
(Ⅰ)写出与
之间的函数关系式;
(Ⅱ)使用若干年后,对机床的处理方案有两种:
方案一:当年平均盈利额达到最大值时,以万元价格处理该机床;
方案二:当盈利额达到最大值时,以万元价格处理该机床;
请你研究一下哪种方案处理较为合理?并说明理由.
已知函数和
的图象关于
轴对称,且
.
(1)求函数的解析式;
(2)当时,解不等式
.
已知,
,
.
(1)若,求
的值;
(2)设,若
,求
、
的值.
设函数.
(1)当,
时,求函数
的最大值;
(2)令,其图象上存在一点
,使此处切线的斜率
,求实数
的取值范围;
(3)当,
时,方程
有唯一实数解,求正数
的值.
新晨投资公司拟投资开发某项新产品,市场评估能获得万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不低于
万元,同时不超过投资收益的
.
(1)设奖励方案的函数模型为,试用数学语言表述公司对奖励方案的函数模型
的基本要求.
(2)下面是公司预设的两个奖励方案的函数模型:
①;②
试分别分析这两个函数模型是否符合公司要求.
如图,游客在景点处下山至
处有两条路径.一条是从
沿直道步行到
,另一条是先从
沿索道乘缆车到
,然后从
沿直道步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
.假设缆车匀速直线运动的速度为
,索道
长为
,经测量
,
.
(1)求山路的长;
(2)假设乙先到,为使乙在处等待甲的时间不超过
分钟,乙步行的速度应控制在什么范围内?