据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,
≈1.7)
已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.
上个月,商店共卖出甲、乙两种商品1000件,这个月甲商品多卖出50%,乙商品少卖出10%,结果产品的总销量减少了4%,上个月甲、乙两种商品各卖出多少件?
解下列各题:
(1)解方程组
(2)化简:
(3)解不等式:≤
,并把它的解集表示在数轴上
(4)解不等式组:,并把它的解集表示在数轴上.
已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:
x |
… |
﹣1 |
0 |
1 |
3 |
4 |
… |
y |
… |
8 |
0 |
0 |
… |
(1)抛物线的对称轴是_________ .点A(______,____),B(_____,_____);
(2)求二次函数y=ax2+bx+3的解析式;
(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?
某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x |
30 |
32 |
34 |
36 |
y |
40 |
36 |
32 |
28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式;(不写出自变量x的取值范围)
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?