已知数列的前项和为,,,,其中为常数.(1)证明:数列是等差数列;(2)是否存在实数λ,使得为等差数列?并说明理由;(3)若为等差数列,令,求数列的前项和.
在锐角中,, (Ⅰ)求角的大小; (Ⅱ)当时,求面积的最大值.
已知集合为函数的定义域,集合. (Ⅰ)求集合、; (Ⅱ)若是的真子集,求实数的取值范围.
设函数,; (1)求证:函数在上单调递增; (2)设,,若直线轴,求两点间的最短距离.
数列前项和,数列满足(), (1)求数列的通项公式; (2)求证:当时,数列为等比数列; (3)在题(2)的条件下,设数列的前项和为,若数列中只有最小,求的取值范围.
函数(为常数)的图象过原点,且对任意总有成立; (1)若的最大值等于1,求的解析式; (2)试比较与的大小关系.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号