从某学校高三年级800名学生中随机抽取50名测量身高,据测量,被抽取学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图是按上述分组方法得到的条形图.
(1)根据已知条件填写下面表格:
组别 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
频数 |
|
|
|
|
|
|
|
|
(2)估计这所学校高三年级800名学生中身高在175cm以上(含175cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为同性别学生的概率是多少?
已知函数.
(Ⅰ)求在区间
上的最大值;
(Ⅱ)若过点存在
条直线与曲线
相切,求
的取值范围.
设命题p:函数的定义域为R;命题q:不等式
对一切
均成立。
(Ⅰ)如果p是真命题,求实数的取值范围;
(Ⅱ)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围.
已知中心在原点,焦点在坐标轴上的椭圆的方程为
它的离心率为
,一个焦点是
,过直线
上一点引椭圆
的两条切线,切点分别是A、B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点
处的切线方程是
.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问否存在实数,使得
成立,若成立求出
的值,若不存在,请说明理由
已知函数.
(Ⅰ)讨论函数在定义域内的极值点的个数;
(Ⅱ)若函数在
处取得极值,对任意的
恒成立,求实数
的取值范围.
在边长为的菱形
中,
.现沿对角线
把△
折起,折起后使
的余弦值为
.
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)若是
的中点,求三棱锥
的体积.