如图,已知两条直线a∥b,直线a、b间的距离为h,点M、N在直线a上,MN=x;点P在直线b上,并且x+h=40.
(1)记△PMN的面积为S,
①求S与x的函数关系,并求出MN的长为多少时△PMN的面积最大?最大面积是多少?
②当△PMN的面积最大时,能求出∠PMN的正切值吗?为什么?
(2)请你用尺规作图的方法确定△PMN的周长最小时点P的位置(要求不写作法,但保留作图痕迹);并判断△PMN的形状;
(3)请你在(2)②中得到的△PMN内求一点P,使得AP+AM+AN的和最小,求出AP+AM+AN和的最小值.
如图,AC=AD,∠BAC=∠BAD,点E在AB上.
(1)你能找出 对全等的三角形;
(2)请写出一对全等三角形,并说明理由.
在下列三个二元一次方程中,请你选择合适的两个方程组成二元一次方程组,然后求出方程组的解.
可供选择的方程:① y=2x-3② 2x+y=5③ 4x-y=7.
某商场计划拨款9万元购进50台电视机. 已知厂家生产三种不同型号的电视机, 出厂价分别为: 甲种电视机每台1500元, 乙种电视机每台2100元, 丙种电视机每台2500元。
(1) 若商场同时购进其中两种不同型号的电视机共50台, 用去9万元, 问有多少中不同的进货方案? 并写出这些方案。
(2) 若商场销售一台甲种电视机可获利150元, 销售一台乙种电视机可获利200元, 销售一台丙种电视机可获利250元. 在第(1)小题的几个方案中, 为使销售时获得利润最多, 你选择哪种方案? 并说明理由。
如图 (1) 地图中由街道构成的两个三角形全等吗?如果全等请给图形作上恰当的字母标记 ,并说明两个三角形全等的理由。 (2) 如果你站在中山路和南京路的交叉口,你想去动物园走哪一条路线最近?请简要说明理由。
一个不透明的布袋中装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同。
(1) 摸一个球,记下颜色后放回,并拌匀,在摸出一个球,求两次摸出的球颜色恰好不同的概率(要求用树状图或列表法说明)。
(2) 再将n个白球放入袋中,拌匀,使摸出一个球是白球的概率是,求n的值。