(本小题满分13分)如图, 是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 |
1至4件 |
5至8件 |
9至12件 |
13至16件 |
17件及以上 |
顾客数(人) |
x |
30 |
25 |
y |
10 |
结算时间(分钟/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知这100位顾客中一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.
(注:将频率视为概率)
已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.
设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.
(Ⅰ)求B;
(Ⅱ)若sinAsinC=,求C.
函数,过曲线
上的点
的切线方程为
.
(1)若在
时有极值,求
的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
在中,内角
的对边分别为
.已知
.
(1)求的值;(2) 若
,求
的面积.