阅读材料:如图1,△ABC的周长为l,面积为S,内切圆O的半径为r,探究r与S、l之间的关系.
连接OA,OB,OC
∵S=S△OAB+S△OBC+S△OCA
又∵,
,
∴
∴
解决问题:
(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;
(2)若四边形ABCD存在内切圆(与各边都相切的圆),如图2且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…,an,合理猜想其内切圆半径公式(不需说明理由).
已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为k,若AD∶BC=2∶3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?
①当k=1时,是_________;
②当k=2时,是_________;
③当k=3时,是_________.并证明k=2时的结论.
如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.
(1)求证:梯形ABCD是等腰梯形;
(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.
如图,在平行四边形ABCD中,平分
,交
于点
,
平分
,交
于点
,
与
交于点
,连接
,
.
(1)求证:四边形是菱形;
(2)若,
,
,求
的值.
如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.
(1)对角线AC的长是 ,菱形ABCD的面积是 ;
(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;
(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由,若变化,请探究OE、OF之间的数量关系,并说明理由.
如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.