问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求
:
尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有,
,
.
类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC与S△ABC的比是图中哪条线段的比,并加以证明.
拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.
如图,抛物线=-
+5
+
经过点C(4,0),与
轴交于另一点A,与
轴交于点B.
(1)求点A、B的坐标;
(2)P是轴上一点,△PAB是等腰三角形,试求P点坐标;
(3)若·Q的半径为1,圆心Q在抛物线上运动,当·Q与轴相切时,求·Q上的点到点B的最短距离.
如图,四边形ABCD是矩形,AB=3,AD=4,直线PS分别交AB、CD的延长线于P、S,交BC、AC、AD于Q、E、R,BP=1,DS=2.
(1)写出图中相似三角形(不含全等三角形);
(2)请找出图中除AB=CD、BC=AD以外的相等线段,并证明你的判断.
(3)求四边形ABQR与四边形CQRD的面积比.
今年4月20日,四川芦山发生了里氏7.0级大地震,给当地人民造成了巨大的损失,“一方有难,八方支援”,我县某中学全体师生积极捐款,其中九年级的三个班学生的捐款金额如下表:
班级 |
(1)班 |
(2)班 |
(3)班 |
金额(元) |
2000 |
![]() |
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:(2)班的捐款金额比(3)班的捐款金额多300元;信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
如图,已知反比例函数=
的图像与一次函数
=
+
的图像交于两点A(-2,1)、B(
,-2).
(1)求反比例函数和一次函数的解析式;
(2)若一次函数=
+
的图像与
轴交于点C,求△AOC(O为坐标原点)的面积.
学校为了了解全校3200名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学.