游客
题文

已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.

(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

化简,再求值,其中

已知A(1,)是反比例函数图象上的一点,直线AC经过点A及坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的解析式。

(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP=

(1)求点M的坐标(用含的代数式表示);
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;
(3)当为何值时,四边形BNDM的面积最小.

(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.

(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(),当满足什么条件时,平移后的抛物线总有不动点?

(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.

(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号