(本小题满分12分)如图,在四棱锥P﹣ABCD中,底面ABCD是梯形,PA⊥底面ABCD,其中BA⊥AD,AD∥BC, AC与BD交于点O,M是AB边上的点,且,已知PA=AD=4,AB=3,BC=2.
(Ⅰ)求平面PAD与平面PMC所成锐二面角的正切值;
(Ⅱ)已知N是PM上一点,且ON∥平面PCD,求的值.
在△ABC中,已知角A为锐角,且.
(1)、将化简成
的形式;
(2)、若,求边AC的长. ;
设椭圆过点
,离心率为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
=
,证明:点
的轨迹与
无关.
已知函数上为增函数.
(1)求k的取值范围;
(2)若函数的图象有三个不同的交点,求实数k的取值范围.
对任意
都有
(Ⅰ)求和
的值;
(Ⅱ)数列满足:
=
+
,数列
是等差数列吗?请给予证明;
(Ⅲ)令
试比较与
的大小.
在三棱柱ABC-A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=
,设D为
中点,
(Ⅰ)求证:平面
;
(Ⅱ)求与平面
所成角的正弦值.