(本小题满分12分)某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:
分组 |
频数 |
频率 |
[39.95,39.97) |
10 |
|
[39. 97,39.99) |
20 |
|
[39.99,40.01) |
50 |
|
[40.01,40.03] |
20 |
|
合计 |
100 |
|
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
如图,在三棱锥S-ABC中,SA⊥SB,SB⊥SC,SA⊥SC,且SA、SB、
SC和底面ABC,所成的角分别为α1、α2、α3,三侧面SBC,SAC,SAB的面积分别为S1,S2,S3,类比三角形中的正弦定理,给出空间情形的一个猜想.
在数列{an}中,a1=1,an+1=,n∈N+,求a2,a3,a4
并猜想数列的通项公式,并给出证明.
观察以下等式:
sin230°+cos260°+sin 30°·cos 60°=,
sin240°+cos270°+sin 40°·cos 70°=,
sin215°+cos245°+sin 15°·cos 45°=.
…
写出反映一般规律的等式,并给予证明.
设Sn=+…+
,写出S1,S2,S3,S4的值,归纳并猜想出结果,并给出证明.
若z为复数,且∈R,求复数z满足的条件.