(本小题满分13分)如图,椭圆()经过点,离心率.(1)求椭圆的方程;(2)设直线与椭圆交于,两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
在中,, (Ⅰ)求的值;(Ⅱ)若的面积,求的长.
解不等式
(本题12分) 已知函数. (1)求的单调区间; (2)求在区间上的最小值; (3)设,当时,对任意,都有成立,求实数的取值范围。
(本题12分)已知椭圆的长半轴长为,且点在椭圆上. (1)求椭圆的方程; (2)过椭圆右焦点的直线交椭圆于两点,若,求直线方程.
(本题12分)设为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (1)求函数的解析式; (2)求函数f(x)在[-1,3]上的最大值和最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号