(本小题满分13分)如图,椭圆()经过点,离心率.(1)求椭圆的方程;(2)设直线与椭圆交于,两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
已知函数 (1)求函数的最小正周期及在区间上的最大值和最小值; (2)若,求的值.
是两个不共线的非零向量,且. (1)记当实数t为何值时,为钝角? (2)令,求的值域及单调递减区间.
集合. (1)当时,求; (2)若是只有一个元素的集合,求实数的取值范围.
已知,函数. (I)证明:函数在上单调递增; (Ⅱ)求函数的零点.
已知圆C和轴相切,圆心C在直线上,且被直线截得的弦长为,求圆C的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号