甲市火车货运站现有苹果1530吨,梨1150吨,安排一列货车将这批苹果和梨运往乙市.这列货车可以挂A、B两种不同规格的货箱共50节,已知用一节A型货箱的运费是0.5万元,用一节B型货箱的运费用是.0.8万元.
(1)设运输这批苹果和梨的总运费为y(万元),用A型货箱的节数为x(节),试写出y与x的函数关系式.
(2)已知35吨苹果和15吨梨可装满一节A型货箱,25吨苹果和35吨梨可装满一节B型车箱,请问运输所有苹果和梨的方案共有几种,请设计出来.
(3)利用函数的性质说明,在第(2)问的方案中,哪种方案的运费最少,最少运费用是多少?
在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= ;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
阅读材料并回答问题:(本题8分)
我们知道,乘法公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:,就可以用图1或图2等图形的面积表示.
(1)请写出图3所表示的代数恒等式:;
(2)试画一个几何图形,使它的面积表示:;
(3)请仿照上述方法另写一个含有,
的代数恒等式,并画出与它对应的几何图形.
同学们已经体会到灵活运用乘法公式给整式乘法带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=②
=39975
(1)例题求解过程中,第②步变形是利用(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001
基本事实:若(a>0且a≠1,m、n是正整数),则m=n.
试利用上述基本事实分别求下列各等式中x的值:
①;②
.
(本题6分)AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?
解:BE∥DF.
∵AB⊥BC,
∴∠ABC=°,
即∠3+∠4=°.
又∵∠1+∠2=90°,
且∠2=∠3,
∴=.
理由是:________________.
∴BE∥DF.
理由是:________________.