为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)这次抽样调查的总人数为 人,扇形统计图中“舞蹈”对应的圆心角度数为 ;
(2)若该校有1400名学生,估计选择参加书法的有多少人?
(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,根据画树状图或表格法求恰为一男一女的概率.
化简求值: ,其中 与2,3构成三角形的三边,且 为整数.
计算: .
如图,在平面直角坐标系 中,抛物线 与 轴相交于 , 两点,顶点 的坐标为 .点 为抛物线上一动点,连接 , ,过点 的直线与抛物线交于另一点 .
(1)求抛物线的函数表达式;
(2)若点 的横坐标与纵坐标相等, ,且点 位于 轴上方,求点 的坐标;
(3)若点 的横坐标为 , ,请用含 的代数式表示点 的横坐标,并求出当 时,点 的横坐标的取值范围.
在 中, , , ,将 绕点 顺时针旋转得到△ ,其中点 , 的对应点分别为点 , .
(1)如图1,当点 落在 的延长线上时,求 的长;
(2)如图2,当点 落在 的延长线上时,连接 ,交 于点 ,求 的长;
(3)如图3,连接 , ,直线 交 于点 ,点 为 的中点,连接 .在旋转过程中, 是否存在最小值?若存在,求出 的最小值;若不存在,请说明理由.